五年内部分学术代表作:
[1] Z. Zhao, Global well-posedness and scattering for the defocusing cubic Schrődinger equation on waveguide R2×T2, Journal of Hyperbolic Differential Equations, Vol. 16, No. 1 (2019) 1-57.
[2] C. Gao and Z. Zhao, On scattering for the defocusing high dimensional inter-critical NLS, Journal of Differential Equations, Volume 267, Issue 11, Pages 6198-6215.
[3] X. Cheng, Z. Guo, and Z. Zhao, On scattering for the defocusing quintic nonlinear Schrődinger equation on the two dimensional cylinder, SIAM Journal on Mathematical Analysis, 52 (2020), no. 5, 4185-4237.
[4] X. Cheng Z. Zhao and J. Zheng, Well-posedness for energy-critical NLS on waveguide manifold, Journal of Mathematical Analysis and Applications, Volume 494, Issue 2, 15 February 2021.
[5] Z. Zhao, On scattering for the defocusing nonlinear Schrődinger equation on waveguide Rm×T (when m=2,3), Journal of Differential Equations, Volume 275, 25 February 2021, Pages 598-637.
[6] C. Fan and Z. Zhao, Decay estimates for nonlinear Schrődinger equations, Discrete Contin. Dyn. Syst., 41 (2021), no. 8, 3973-3984.
[7] X. Yu, H. Yue, Z. Zhao, Global well-posedness for the focusing, cubic NLS on product space R×T3, SIAM Journal on Mathematical Analysis, Vol. 53, Issue. 2; Pages. 2243-2274.
[8] Z. Zhao and J. Zheng, Long time dynamics for defocusing cubic NLS on three dimensional product space, SIAM Journal on Mathematical Analysis, Vol. 53, No. 3, pp. 3644-3660.
[9] J. Chong, M. Grillakis, M. Machedon and Z. Zhao, Global estimates for the Hartree-Fock-Bogoliubov Equation, Communications in Partial Differential Equations, 46 (2021), no. 10, 2015–2055.
[10] J. Chong and Z. Zhao, Dynamical Hartree-Fock-Bogoliubov Approximation of Interacting Bosons, Ann. Henri Poincaré, 23 (2022), no. 2, 615–673.
[11] C. Fan and Z. Zhao, A note on decay property of nonlinear Schrődinger equations, Proceedings of AMS, Volume 151, Number 6, June 2023, Pages 2527–2542..
[12] X. Yu, H. Yue, Z. Zhao, On the decay property of cubic fourth order Schrődinger equation, Proceedings of AMS, Volume 151, Number 6, June 2023, Pages 2619–2630.
[13] K. Yang and Z. Zhao, On scattering asymptotics for the 2D cubic resonant system, Journal of Differential Equations, Vol. 345, 5 February 2023, Pages 447-484.
[14] Q. Su and Z. Zhao, Dynamics of subcritical threshold solutions for energy-critical NLS, Dynamics of Partial Differential Equations, Vol. 20, No. 1 (2023), pp. 37-72.
[15] Y. Sire, X. Yu, H. Yue and Z. Zhao, Singular Levy processes and dispersive effects of generalized Schrődinger equations, Dynamics of Partial Differential Equations, Volume 20, Number 2, 2023, Pages: 153-178.
[16] C. Fan, W. Xu and Z. Zhao, Long time behavior of stochastic NLS with a small multiplicative noise, Communications in Mathematical Physics, Volume 404, pages 563-595 (2023).
[17] X. Yu, H. Yue and Z. Zhao, Global well-posedness and scattering for fourth order Schr\"odinger equation on waveguide manifold, SIAM Journal on Mathematical Analysis, Volume 56, Iss. 1 (2024).
[18] C. Fan, G. Staffilani and Z. Zhao, On decaying properties of nonlinear Schr\"odinger equations, SIAM Journal on Mathematical Analysis (2024).
[19] X. Yu and Z. Zhao, On scattering for NLS on waveguide manifolds: a short survey, Birkh\"auser Series: Research Perspectives Ghent Analysis and PDE Center (2024).
[20] C. Fan and Z. Zhao, On long time behavior for stochastic nonlinear Schr\"odinger equations with a multiplicative noise, International Mathematics Research Notices (2024).
[21] X. Huang, X. Yu, Z. Zhao and J. Zheng, On Strichartz estimate for many body Schr\"odinger equation in the periodic setting, Forum Mathematicum (2024).
[22] T. Ma, H. Wang, X. Yu and Z. Zhao, On the decaying property of quintic NLS on 3D hyperbolic space, Nonlinear Analysis, Theory, Methods and Applications (2024).
[23] Y. Deng, C. Fan, K. Yang, Z. Zhao and J. Zheng, On bilinear Strichartz estimates on waveguides with applications, Journal of Functional Analysis (2024).
[24] J. Chong, X. Dong, M. Grillakis, M. Machedon and Z. Zhao, Global uniform in N estimates for solutions of a system of Hartree-Fock-Bogoliubov type in the case beta<1, Peking Mathematical Journal. (2024)
其他成果及预印本结果见arXiv.
Personal page: https://sites.google.com/view/zehuazhao/home