论著详细可见下列地址:
https://www.researchgate.net/profile/Fu-Gui-Shi
https://scholar.google.com/citations?user=6a3Ka3AAAAAJ&hl=en
特色工作:
(1)基于完全分配格的极小集和极大集理论,给出了格值模糊集的分解定理和表现定理,它们能够被简洁而有效地应用到格值模糊集合的各种相关理论中.
[1] 史福贵,$L_beta$集合套与$L_alpha$集合套理论及其应用,模糊系统与数学,1995,9: 65-72.
[2] 黄韩亮,史福贵, L-fuzzy numbers and their properties, Information Sciences, 2008, 178: 1141-1151.
[3] 史福贵, L-fuzzy interiors and L-fuzzy closures, Fuzzy Sets and Systems, 160: 1218-1232,2009.
[4] 李娟, 史福贵, L-fuzzy convexity induced by L-convex fuzzy sublattice degree, Iranian Journal of Fuzzy Systems, 2017, 14: 83-102.
(2)建立了格上点式一致结构与点式度量理论,较为理想地反映了格上拓扑中点和它的远域间的隶属关系.
[5] 史福贵,完全分配格上的点式拟一致构与p.q.度量, 数学学报, 39(5): 701-706 (1996).
[6] 史福贵,Pointwise uniformities and metrics on fuzzy lattices, Chinese Science Bulletin, 1997.
[7] 史福贵,郑崇友, Metrization theorem in L-topological spaces, Fuzzy Sets and Systems,2005, 149: 455-471.
[8] 史福贵, (L,M)-fuzzy metric spaces, Indian Journal of Mathematics, 2010, 52: 231-250.
(3)借助于格值模糊集的不等式,给出了模糊紧性的一个非常简洁的刻画。
[9] 史福贵, A new definition of fuzzy compactness, Fuzzy Sets and Systems, 158(13): 1486--1495 (2007).
[10] 史福贵, A new notion of fuzzy compactness in L-topological spaces, Information Sciences, 173: 35--48 (2005).
(4)给出了拟阵模糊化的一种新方法,提出了模糊化拟阵和LM-模糊拟阵理论。
[11] 史福贵, (L,M)-fuzzy matroids, Fuzzy Sets and Systems, 160: 2387-2400, 2009.
[12] 史福贵, A new approach to the fuzzification of matroids, Fuzzy Sets and Systems, 160: 696-705, 2009.
[13] 信秀, 史福贵, Categories of bi-fuzzy pre-matroids, Computers and Mathematics with Applications, 59(4) 1548-1558, 2010.
(5)给出了凸结构模糊化的一种新方法,提出了模糊化凸结构和LM-模糊凸结构理论。特别地,提供了从各种模糊子代数出发生成LM-模糊凸结构的方法,扩展了格值模糊凸结构的应用范围。
[14] 史福贵, 修振宇, A New Approach to the Fuzzification of Convex Structures, Journal of Applied Mathematics, 249183, 2014.
[15] 史福贵, 修振宇, (L,M)-fuzzy convex structures, J. Nonlinear Sci. Appl., 10(2017), 3655-3669.
[16] 修振宇, 史福贵, M-fuzzifying interval spaces, Iranian Journal of Fuzzy Systems, 14(1): 145-162, 2017.
[17] 魏晓伟, 史福贵, Convexity-preserving properties of partial binary operations with respect to filter convex structures on effect algebras, International Journal of Theoretical Physics, 2022, 61:195.
[18] Zeng, Mingyi; 王岚, 史福贵, A Novel Approach to the Fuzzification of Fields, Symmetry-Basel, 2022, 14: 1190.
(6)提出了代数模糊化的一种新方法,得到一系列hazy代数的新结果。
[19] 刘奇, 史福贵, A new approach to the fuzzification of groups, Journal of Intelligent & Fuzzy Systems, 2019, 37: 6429-6442.
[20] 刘奇, 史福贵, M-hazy lattices and its induced fuzzifying convexities, Journal of Intelligent & Fuzzy Systems, 2019, 37: 2419-2433.
[21] Mehmood Faisal, 史福贵, M-Hazy Vector Spaces over M-Hazy Field, Mathematics, 2021, 9: 1118.