[11] Y.-X. Ren, T. Yang*, R. Zhang: Extremal process of super-Brownian motions: A probabilistic approach via skeletons. Preprint 2022.
[10] Y.-X. Ren, R. Song, T. Yang*: Spine decomposition and LlogL criterial for superprocesses with non-local branching mechanisms .ALEA, Lat. Am. J. Probab. Math. Stat. 19(1)(2022): 163–208
[9] A. Kyprianou, V. Rivero, B. Sengul, T. Yang*: Entrance laws at the origin of self-similar Markov processes in high dimensions. Transactions of the American Mathematical Society. 373(9) (2020): 6227-6299.
[8] S. Palau, T. Yang*: Law of large numbers for supercritical superprocesses with non-local branching. Stochastic Processes and their Applications.130(2) (2020), 1074-1102.
[7] Z.-Q. Chen, Y.-X. Ren, T.Yang*: Skeleton decomposition and law of large numbers for supercritical superprocesses. Acta Applicandae Mathematicae, 159(1) (2019): 225-285.
[6] Z.-Q. Chen, T. Yang*: Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation. arXiv:1503.05302 [math.PR]
[5] Z.-Q. Chen, Y.-X. Ren, T. Yang*:Law of large numbers for branching symmetric Hunt processes with measure-valued branching rates. Journal of Theoretical Probability, 30(3) (2017): 898-931
[4] Z.-Q. Chen, Y.-X. Ren, T. Yang*:Boundary Harnack principle and gradient estimates for harmonic functions with respect to fractional Laplacian perturbed by non-local operators. Potential Anal. 45(3)(2016), 509–537.
[3] Y.-X. Ren, T. Yang*, G.-H. Zhao: Conditional limit theorems for critical contituous-state branching processes. Sci. China Math. 57,12, (2014): 2577-2588.
[2] Y.-X. Ren, T. Yang*: Multitype branching Brownian motion and traveling waves. Adv. Appl. Probab. 46, 1, (2014), 217-240.
[1] Y.-X. Ren, T. Yang*: Limit theorem for derivative martingale at criticality w.r.t branching Brownian motion. Probab. Statistics Letters, 81(2) (2011), 195-200.